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The dynamics of N particles with hard core exclusion performing biased random 
walks is studied on a one-dimensional lattice with a reflecting wall. The bias is 
toward the wall and the particles are placed initially on the N sites of the lattice 
closest to the wall. For N =  1 the leading behavior of the first passage time Tve 
to a distant site l is known to follow the Kramers  escape time formula Tvp ~ 2 j 
where 2 is the ratio of hopping rates toward and away from the wall. For N > 1 
Monte Carlo and analytical results are presented to show that for the particle 
closest to the wall, the Kramers  formula generalizes to TFp ~ •IN. First passage 
times for the other particles are studied as welt. A second question that is 
studied pertains to survival times Ts in the presence of an absorbing barrier 
placed at site l. In contrast to the first passage time, it is found that T s follows 
the leading behavior 2 t independent of N. 

KEY WORDS:  Interacting random walks; bias; generalized Kramers  escape 
problem; survival times. 

1. I N T R O D U C T I O N  

The problem of escape of a single particle from a one-dimensional potential 
well has been studied for a number of years, and the classical Kramers 
result (1"2) for the escape time has been rederived in various ways. (3) The 
single particle problem has been generalized relatively recently to allow for 
higher dimensional potentials. (4) However, it seems that escape times in the 
presence of interactions between particles have not been studied before. We 
address this problem in the present paper. We allow for hard core interac- 
tions between particles and confine our attention to a linear potential 
produced by a constant field on one side of a reflecting wall. 

The motivation for considering such a system comes partly from 
studies of the infinite percolation cluster in an external fieldJ 5 81 Particles 
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which enter dead-end branches which point predominantly in the direction 
of the field have to be activated against the field to resume transport. In a 
system of noninteracting particles this leads to anomalous behavior such as 
a drift velocity which decreases as the field increases. However, in any 
application to real systems it is crucial to account for hard core exclusion; 
such interactions cause branches to fill up and cease to be effective as 
traps. (9) The present study is a preliminary attempt to understand the 
dynamics of deeply trapped interacting particles in branches. 

We describe this problem as that of interacting random walkers with 
hard core exclusion on a one-dimensional lattice with a reflecting wall. 
(Particles can occupy sites with positive labels 1, 2, 3,...; site 0 plays the role 
of a wall). Quantities of interest are first passage and survival times, steady- 
state distributions and spreads. We study these using Monte Carlo 
simulations and also analytically. In the Monte Carlo study, the effect of 
the external field is incorporated by allowing the particles to perform a 
biased random walk, with steps along the field (toward the wall) being 
more likely than in the opposite direction. Steps onto already occupied 
sites are disallowed, which is consistent with hard core interactions. 

Interacting random walks are of current interest (1~ it should be 
noted that the presence of bias makes analysis difficult as it renders the 
reflection principle invalid. Biased random walks with nearest-neighbor 
interactions, in addition to hard core exclusion, have been simulated using 
periodic boundary conditions (12) and phase transitions in the current-carry- 
ing steady state in two dimensions were investigated. 

With a wall, the full time-dependent problem for a single walker on 
the one-dimensional lattice has been solved recently. (13/ The mean first 
passage time z(1) to reach a site a distance I lattice spacings from the wall is 
consistent with the Kramers formula 

r ( / ) ~ [ 2 ( g ) ] '  1 (1) 

where 2 ( g ) -  (1 + g ) / ( 1 -  g) is the ratio of backward to forward hopping 
rates. One of the principal results of the present work is that with N hard- 
core particles in the well, the first passage time Tvp for the particle that 
starts out closest to the wall to cross a distant site l is 

Tvp(l, N)~ [~(g)]N(, '  1) (2) 

First passage times for the other particles are also studied. We also study 
survival times Ts(l, N) for hard core particles when an absorbing boundary 
is placed at site l. We find that in contrast to first passage times, the sur- 
vival time Ts(l, N) follows (1). A detailed discussion of Tvi, and Ts is given 
in Sections 3 and 4, respectively; in the next section we discuss the steady- 
state properties of the system. 
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2. THE  M O D E L  A N D  S T E A D Y  S T A T E  

We study interacting biased random walks on the infinite half line 
i = 1, 2 ..... Initially the N particles occupy the sites i = 1, 2,..., N. At each 
subsequent time step, these N particles are moved at random, with the 
restriction that a particle can move onto a neighboring site only if it is 
vacant (Kawasaki dynamics). The probability for attempting to move right 
(left) is ( l - g ) / 2  [respectively, (1 + g ) / 2 ] .  The site i = 0  is a reflecting 
boundary; no particle is allowed on or to the left of this site. 

Due to the presence of bias, the system is expected to reach steady 
state eventually. The time required to do so depends strongly on the bias g 
as do various characteristics of the steady state (see below). In contrast to 
the situation with periodic boundary conditions, (~2) the steady state for the 
system with a wall can be described by a Hamiltonian ~ .  If n~= 0 or 1 is 
the occupation number of site l, we have 

H =  ~ ~lnl (3) 
/ = l  

where et = El is the potential energy corresponding to a constant field - E. 
The bias g of the random walk is connected to E and the inverse tem- 
perature/~ by 

l + g  
2(g) -= e ~L (4) 

1 - g  

Starting with (3) we can find either the canonical partition function 
Q(N, g) or the grand partition function Z(/~#, g) where # is the chemical 
potential. We find 

Z(fl#, g) = I ]  [1 + exp fl(# - el)] (5) 
l 

while the mean number of particles on site l is given by 

<nz ) = [ 1 + exp f i (e t -  #)]  -1 (6) 

Monte Carlo results obtained using a fixed number N of particles can be 
compared with the consequences of this formula for the density profile. 
Some results are shown in Fig. 1. Besides (n l ) ,  we have plotted the ratio 

(nt+ 1)/(1 -- (nl+ 1)) 
R t -  (7) 

(nz) / (1  -- ( n z ) )  

as it follows from (6) that Rt should be equal to 2(g) for all I. 
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Fig. 1. Monte  Carlo results for the steady-state density of particles ( n t )  on site l are shown. 
Each point is the average over 10,000 random walks in each of which 5000 Monte  Carlo steps 
were averaged over after equilibriation. Circles (crosses) represent results for N = 3  and 
g =  0.12 (respectively, N =  2, g = 0.04). The ratio Rz defined in (7) is compared against the 
expected value 1 - g/1 + g. 

It is also of interest to ask for the behavior of the spread S of the par- 
ticles defined as the difference of location of the Nth (rightmost) and first 
(leftmost) particles. The spread starts out with its minimum allowed value 
N - 1  at time t = 0 and evolves to a characteristic steady-state value. The 
mean spread ( S )  in steady state is found to be inversely proportional to 
the bias g for small g. This result can be understood as follows. A length 
L ( g ) =  I/In 2(g) is associated with a value g of the bias. This length 
describes the exponential decay of probability density away from the wall 
when there is only one particle in the system. As long as L(g)>i> N, this is 
the underlying length scale in the problem. In particular, the locations of 
the first and Nth  particles and, therefore, the spread, would each be expec- 
ted to be proportional to L(g), which in turn varies as g 1 as g --* 0. For  a 
single particle, the time taken to approach steady state varies as g 2 as 
g ~ 0 (2) and we might have expected the same behavior even for N = 2 or 3 
particles. However, our Monte Carlo data for N =  2, 3 for the time depen- 
dence of the spread seems more consistent with g-1.6 than with g-2. But we 
are not certain that this discrepancy is not caused by systematic errors due 
to nonequilibriation for very small g. 
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3 .  F I R S T  P A S S A G E  T I M E S  

Starting out  at t = 0 with the particles in the N leftmost sites, what  is 
the first t ime tvp(n, l; N) that  the nth particle f rom the left crosses site l? 
The answer depends on the four pa ramete rs  g, N, n, and l. In our  Mon te  
Carlo simulations we have not  studied the full four -pa ramete r  space, but 
only relatively small values of the bias g and n u m b e r  of particles N. In par-  
ticular, in all of our  studies N is less than  the bias- induced length L(g) 
defined in the previous section. 

First let us address the quest ion for n = 1, the particle closest to the 
wall. An idea of what  to expect is obta ined  by observing that  the first par-  
ticle crossing a distant  site l is an extremely unlikely event, and that  
tv~,(1, l;N) is consequently essentially given by the reciprocal  of the 
probabi l i ty  of that  event. This probabi l i ty  can be es t imated as the rat io of a 
constrained par t i t ion function Qz(N, g) defined below, to the full par t i t ion 
function Q(N, g). The appropr ia te  constra ined par t i t ion function is 

20 

TFp(I,{;N) 

TFp(I,{-t;N) 

I-5 

N=3 

N=2 

X 

I ' 0  J I I I , , , , I ~ , , i i i , J I i 
5 IO 15 20 

{ -  

Fig. 2. The behavior of the first passage time of the particle closest to the wall (n = 1) is 
shown for systems of N = I ,  2, and 3 particles with g=0.12. Here Tvp is the median first 
passage time over M= 10,000 distinct random walks. The results are consistent with 
TFp(1, l; N) ~ 2 m. 
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obtained by summing over only those N-particle configurations in which 
all particles lie to the right of, or on, site l. 

{nk} k = 1 

The prime on the summations in (8) and (9) indicates that only those 
states with Zk nk  = N particles are included. With minor relabeling, the 

1"5 -T~ 
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Fig. 3. Monte Carlo results for the dependence of TFp on l for various particles n = 1,..., N. 
Each curve is labeled by the appropriate value of n. Top: N = 3, g = 0.04, M = 10,000. Bottom: 
N = 5, g = 0.04, M = 5,000. Here M is the number of random walks from which the median 
value Tvp is extracted. 
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sum in (9) can be recognized as the partition function Q(N, g). The 
resulting estimate of the first passage time is 

tvp~ Q,(N, g) exp[- f lEN( l -  1)] (10) 
QCN, g) 

Equation (2) then follows from (10) and (4). 
In the Monte Carlo simulations to determine tve(l, I; N), it proved 

expedient to extract the median Tw,(1, l; N) of the first passage time dis- 
tribution (rather than the mean) as the distribution has a substantial tail. 
Instead of displaying the median first passage times Tvp(l, l; N), we have 
plotted in Fig. 2 the successive ratios Tvp(1, l; N)/Tvp(I, l -1 ;  N) versus / 
for various values of N and g. With increasing l, the ratio is seen to con- 
verge to  )N(g), thus providing evidence for (2). 

We have also studied the median first passage times Tvp(n , ]; N) for 
the nth particle to reach site l. Monte Carlo results are shown in Fig. 3. For 
different values of n, the ratios Tve(n, l -1 ;  N)/Tvp(n, l; N) are seen to 
approach distinct values in the limit of large l. The data seem to be con- 
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Fig. 4. Prefactors for the first passage problem [defined in (13)] are plotted against l for 
various n andN.  Left: N = 3 ,  g =  0.04, M =  10,000. Right: n =  1, g=0.12,  M =  10,000. Here M 
is the number of random walks that were sampled. 
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[2(g)] N-n+1, which would imply the 

(11) 

sistent with asymptotic values 
leading behavior 

TFp(Y/, l; N ) ~  [)~(g)](U--n+ 1)l 

Let us define a prefactor P by 

Tvp(n, l; N) = P(n, l; N)[2 (g ) ]  (N-n+ 1)l (12) 

Figure 4 shows the dependence of P(n, l; N) on l, both as n varies with N 
fixed and as N varies with n fixed. We find P displays a smooth maximum 
as a function of l, the location of which moves to larger values of l as n is 
increased (with N held constant) or as N is increased (with n held fixed). It 
would be useful to have a theory which would account for this behavior. 

4. A B S O R B I N G  B O U N D A R Y  

For a single particle, the first passage time to a certain site l is clearly 
the same as the survival time of the particle in the presence of an absorbing 
barrier at l. Once there are two or more interacting particles, this identity 
breaks down for all but the outermost particle. It is interesting to ask for 
median survival times Ts(n, l; N) of particles n = 1, 2,..., N -  1 when there is 
an absorbing barrier at site l. The rightmost particle (n = N) will be the first 
to reach, followed by particle number n = N - 1 ,  etc., all the way to the 
leftmost particle n = 1. For  the same distance of the absorbing boundary 
from the wall, the median survival times Ts(n, l; N) are found to vary by 
substantial factors as n varies from N to 1. However, successive ratios 
Ts(n, l; N)/Ts(n, l -  1; N) show much less variation and are plotted versus l 
in Fig. 5. In contrast to the first passage problem where the ratios separate 
out as functions of l and approach distinct asymptotic values (Fig. 3), we 
see from Fig. 5 that ratios in the survival problem seem to approach the 
same asymptotic value 2(g) - (1 + g)/(1 - g) for all n = 1, 2,..., N. This 
indicates that the survival time for biased random walkers in the presence 
of an absorbing boundary follow the leading behavior 

Ts(n , l ;N)~ [2(g)]  t (13) 

independent of n. A simple argument leading to this result is given in the 
next section. 

5. C O N C L U S I O N  

We have studied the manner in which the Kramers formula for first 
passage/survival times of a single particle generalizes when there are several 
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Fig. 5. Evidence is presented that the survival time T s follows T s + )+l independent of n in the 
presence of an absorbing barrier at site l. Circles, crosses, and triangles stand for n = i, 2, 3, 
respectively. Top: N=2, g=0.04, M= 10,000; bottom: N= 3, g = 0.12, M= 10,000. Despite 
relatively large scatter (especially for the innermost particle) the data is consistent with the 
approach of the ratios of survival times to an n-independent value, in contrast to the behavior 
of the ratios of first pasage times (Fig. 3). 

interacting particles with hard core exclusion. The principal results, (11) for 
the first passage time Tve and (13) for the survival time Ts in the presence 
of an absorbing barrier, can be rationalized in rather  simple terms. In order  
that the rth particle f rom the right (r -- N -  n + 1) be able to reach a distant 
site l for the first time, each of  the N - r  particles on its right must  have 
crossed site l earlier. In the survival problem, particles are absorbed and do 
not return once they reach site l. The time Ts taken by the rth particle to 
reach site l is thus the p roduc t  of an r-dependent  factor and the time 

[ 2 ( g ) ]  t taken by a single particle to be absorbed,  consistent with (13). In 
the first passage problem, on the other  hand, particles keep coming back 
toward the wall under  the influence of  the bias. The probabil i ty that the rth 

8 2 2 / 4 3 / 3 - 4 - i 2  
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particle from the right reaches site I is then the product of r 
(approximately) independent probabilities, each given by ~[-)~(g)] t. 
Hence the probability for the compound event is given by )~ lr, and the 
time Tvp is given by its inverse. However a complete theory which predicts 
prefactors as well is lacking for both Tvp and Ts and is clearly desirable. 

There are some related open problems. First, we have addressed only 
situations in which the bias-induced length L(g) is larger than the spread 
of the initial configuration, namely ( N -  1) lattice spacings. What happens 
if the reverse is true? 

Second, we have dealt only with a fixed number N of particles. In cer- 
tain physical situations it may be more appropriate to let N fluctuate but 
with some other condition specified. For instance, in the case of a branch in 
the percolation problem discussed in the introduction one may fix only the 
mean density of particles at the point the branch is attached to the rest of 
the infinite cluster. A theory analogous to that presented at the beginning 
of Section 2 (but involving grand partition functions) can be worked out, 
with the result that the time required for all particles in a branch of length 
l>> L(g) to empty out grows as ~expEl2/2L(g)]. A verification of this for- 
mula would be valuable. 
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